CPS 616 NP-COMPLETENESS 12-1

TURING MACHINES

Explanation (from
Wikipedia) (140 _J1]1]1]ofoff1]of [1fo]o

tape read/write
A Turmg machine head TU rin g
consists of: -
Machine
State Action Tabe
Register (Transition Function)

1. A tape divided into cells, one next to the other. Each cell contains a symbol
from some finite alphabet. The alphabet contains a special blank symbol and
one or more other symbols. The tape is assumed to be arbitrarily extendable to
the left and to the right, i.e., the Turing machine is always supplied with as
much tape as it needs for its computation. Cells that have not been written
before are assumed to be filled with the blank symbol. In some models the tape
has a left end marked with a special symbol; the tape extends or is indefinitely
extensible to the right.

2. A head that can read and write symbols on the tape and move the tape left and
right one (and only one) cell at a time. In some models the head moves and the
tape is stationary.

3. A state register that stores the state of the Turing machine, one of finitely
many. Among these is the special start state with which the state register is
initialized. These states, writes Turing, replace the "state of mind" a person
performing computations would ordinarily be in.

4. A finite table of instructions that, given the state(q;) the machine is currently
in and the symbol(a;) it 1s reading on the tape (symbol currently under the
head), tells the machine to do the following in sequence:

— Either erase or write a symbol (replacing a; with aj;),

— Move the head ('L' for one step left or 'R’ for one step right or 'N' to stay in
the same place),

— Assume the same or a new state as prescribed (go to state qi;).

Note that every part of the machine (i.e. its state, symbol-collections, and used tape
at any given time) and its actions (such as printing, erasing and tape motion) is
finite, discrete and distinguishable; it is the unlimited amount of tape and runtime
that gives it an unbounded amount of storage space

CPS 616 NP-COMPLETENESS 12-2

Formal Definitions

* A Deterministic Turing Machine (DTM) is a tuple M=(Q, qo,F,T,I, b, §) s.t.
— Q is a finite non-empty set of states
— (o is the initial state; qo € Q
— Fis a set of final (or accepting) states; F € Q
— T is a finite non-empty set of tape alphabet symbols
— b is the blank symbol: the only symbol which can occur on the tape
infinitely; b € T
— I 1is the set of input symbols; I S T-{b}
— & is the next-move (transition) function: (Q-F)XT — QXTx{L,R,N}
0(qi,ai) = (gj,a;,m) means that
If the head is over a; while the TM is in state q;, then
= the head will replace a; by ga;
= the head will move in the direction indicated by m (L= left, R= right,
N=no move)
= the TM will now be in state g;
Note: not all §(q;,a;) are defined

A Non-Deterministic Turing Machine (NTM) is such that.

- Q, qo, F, T, I, b are defined exactly as for DTMs

— Instead of 8(q;,ai) yielding 0 or 1 element of QXTX {L,R,N}
0(qi,a)) € QXTX{L,R,N}

Variations:

— TMs may have multiple tapes

— TMs may have a single final state
— TMs may allow only L and R movements

An string of input symbols is accepted by a Turing Machine iff the TM starts
in qo with the tape head at the left and makes a sequence of moves which
makes it enter one of the accepting states.

The language L.(M) accepted by a Turing Machine M is the set of strings of
input symbols accepted by that Turing machine.

Properties
* All DTMs are NTMs

 Itis possible to turn any NTM into a DTM: i.e. any language accepted by an
NTM is accepted by some DTM

* Church-Turing Thesis: anything that can be "computed" can be computed on
a Turing Machine

CPS 616 NP-COMPLETENESS

NTM EXAMPLE

Partition Problem:
 Accept strings of the form 101110%2...10* such that
* Thereis somesetl € {1, 2, ..., k} for which
* Zjel ij :Zjeél ij

NT™M

* NTM has 3 tapes:
— Tapel contains input string S
— Tapes 2 and 3 are output tapes

* NTM scans tapel:

— After reading a ‘1’ it picks tape 2 or 3 (call is TAPE)

— After reading a ‘0’ it stores it in TAPE

12 -3

— At the end of tapel, it counts the # of Os in tapes 2 and 3 and accepts S if

the same number of Os is in both tapes.

* Formally:
M:({qoa"=q5}= qoa{q5}7{0317B9$}9{071}= B, 8)

0 is defined as:

Current Symbol (New Symbol, Head New .
move) State Explanation
State | Tapel Tape2 Tape3 | Tapel Tape2 Tape3
Mark end
qo 1 B B ILN | $,R $R qQi of tapes 2
and 3
1 B B I.R BN | B,N qQ2 Random
e 1 B B | IR | BN | BN | g state
0 B B | OR | OR | BN | g .
P 1 B | B | IR | BN | BN | a Wrt“e 03 on
B B B | BN | BL | BL | q ape
0 B B | OR | BN | OR | g .
" 1 B B | IR | BN | BN | q Wrt“e O; on
B B B | BN | BL | BL | q ape
B 0 0 B.N 0,L 0,L qs | Match Os in
ks B $ $ | BN | SN | $N | qs | tapes2,3
gs Accept

CPS 616 NP-COMPLETENESS 12 -4

COMPLEXITIES
Note: These definitions are simplified and not completely accurate.

Algorithms

* An algorithm A is said to be of polynomial time if there is a polynomial p(n)
s.t. Cost(A) € O(p)

* An algorithm is said to take superpolynomial time if there is no polynomial
p(n) s.t. Cost(A)€ O(p)

Turing Machines

« A DTM M is said to be of time complexity T(n) if every accepted input
string of length n is accepted in at most T(n) moves.

* ANTM M is said to be of time complexity T(n) if for every accepted input
string of length n there is a sequence of at most T(n) moves leading to an
accepting state.

« A DTM M is said to be of space complexity S(n) if at most S(n) different
cells are scanned on any tape to accept any input string of length n.

« ANTM M is said to be of space complexity S(n) if for every accepted input
string of length n there 1s a sequence of moves leading to an accepting state in
which at most S(n) different cells are scanned on any tape.

Decision Problems

* A decision problem is a problem in a formal system (system of abstract
thought based on the model of mathematics) with a yes-no answer

Examples:

— Is this graph connected?

— Is this number prime?

— Is this polynomial nonnegative?

— Is this optimization problem feasible?

CPS 616 NP-COMPLETENESS 12-5

P AND NP CLASSES
P Class

* P =the complexity class of decision problems which can be solved in
polynomial time (i.e with a polynomial algorithm)

* Examples:
— Connectedness: Is the graph G connected?
— Element uniqueness: Does an array have duplicate elements?
— Primality: is a number prime? (AKS primality testing algorithms
developed in 2002 is O(log®n)

» P = the complexity class of decision problems that can be solved on a DTM
of polynomial complexity

= {L |3 a DTM M and a polynomial p(n) s.t. M is of time complexity p(n)
and L=L(M)}
NP Class

* NP = the complexity class of decision problems which can be verified in
polynomial time (i.e a solution can be verified with a polynomial algorithm)

« Examples:
— Is there a subset of {-8, -5, 0, 1, 2, 6, 10} s.t. the sum of the elements will
be 0?
— Are these two

(™ (2)
graphs eg (¢) (1)

isomorphic:

(a)
@) O O=an 0O
— Does this graph (2)
have a @ ©
Hamiltonian (a)
circuit: (x5

* NP = the complexity class of decision problems that can be solved on a NTM
of polynomial complexity

= {L |3 an NTM M and a polynomial p(n) s.t. M is of time complexity p(n)
and L=L(M)}

Properties:
« PS NP
* Open Problem: Is P=NP oris P € NP?

CPS 616

POLYNOMIAL TRANSFORMATIONS

Definition

NP-COMPLETENESS

12-6

* A language L is polynomially transformable to a language L if there is a
polynomial DTM M which will convert every string w in the alphabet of L
into a string wy in the alphabet of Ly s.t. w € L if and only if wy € Ly

Example

» Languages:

— L= {0" for ne N} = {0,00,000,0000, etc.}
— Lo= {0™ for ne N} = {0,0000, 000000000, 0000000000000000, etc.}

* Deterministic Turing Machine:

3 tapes:
T1=input string w
T2=scratchpad

Algorithm:
Copy w from T1 to T2

For each element of T2, copy w

T3=output string wo (from T1) onto T3
Current Symbol (NewSymbol, move) | New Explanation
State | TI1 T2 T3 T1 T2 T3 | State p

0 B B 0,R O.R | B,N Jo Copy T1 to

Qo B B B | BL | BL | BN | q T2
0 0 B OL | ON | OR qQi

@ | B | 0| B |BR|BL|BN| g C%’_%’%T_I)Ifo
0 B B ON | BN | BN |accept
0 0 B OOR | ON | OR Q2

@ | B | 0| B |BL|BL|BN| q C%’yLEI{O
0 B B ON | BN

— This TM is of time complexity O(n?)

— Therefore L is polynomially transformable to L,

— Note that it is harder to prove that L is

polynomially transformable to L

Theorem:

» IfL is polynomially transformable to Ly and Lo€P then LEP

CPS 616 NP-COMPLETENESS 12 -7

PROBLEM REDUCTION REVISITED
Definitions

* Problem X is reducible to problem Y if an algorithm for solving Y efficiently
(if it existed) could be used as a subroutine to solve problem X efficiently

« If that is the case, then solving X cannot be harder than solving Y (as long as
the rest of the algorithm for X is at least as efficient as the Y algorithm). So a
lower bound on the cost of X becomes a lower bound on the cost of Y.

» Ifproblem X is reducible to problem Y, the algorithm that solves X using the
subroutine that solves Y is called a Turing reduction from X to Y

* A problem X is polynomially reducible to a problem Y (notation X <,,Y) if
there is a Turing reduction from X to Y which
— runs in polynomial time excluding the time spent in the Y algorithm.
— has a polynomial number of calls to the Y algorithm.

Example

* The algorithm we used to solve the element uniqueness problem Q using a
solution to the minimum spanning tree problem P was a Turing reduction
from Q to P.

* Q runs in 6(n) time excluding the time spent in P
* Qcalls P once

* Therefore the element uniqueness problem is polynomially reducible to the
minimum spanning tree problem.

Theorem
» If X is polynomially reducible to Y and Y€P then X€P

NP-COMPLETENESS

* A problem YENP is nondeterministic polynomial-time complete (NP-
complete) if all problems in NP can be polynomially reduced to Y

Satisfiability Problem

* Can a boolean formula evaluate to true? (i.e. is satisfiable)

« Examples:
— "x and not X" is not satisfiable because it is false for all boolean value of x
— "x and not y" is satisfiable because it is true when x=true and y=false

* Cook's Theorem: The satisfiability problem is NP-complete

CPS 616 NP-COMPLETENESS 12-8

Theorem

* If XENP is NP-complete and X is polynomially reducible to YENP then Y is
NP-Complete

Other NP-complete Problems:
* Let G=(V, E) be an undirected graph

* The complement graph G© = (V,E) / \
where E¢ = {possible edges not in G} % &

* ak-clique of G is a complete subgraph of
G with k vertices (every pair of vertices
is connected by an edge)

D>

not a dique non-maximal clique maximal dique

* A vertex cover of G 1s a subset SEV s.t.

each edge of G is incident upon some .ﬁ (i:l_.

vertex in S

* The clique problem: "does an undirected graph have a k-clique?" is NP-
complete

* Is the vertex cover problem: "does an undirected graph have a vertex cover of
size k?" NP-complete?

* The clique problem is polynomially reducible to the vertex cover problem
— Sis a clique of G iff V-S is a vertex cover of G¢:
— Sisaclique in G,
= iff Every pair of vertices in S must be in G
* iff no edge in G° connects two vertices in S
» iff every edge in G© is incident upon some vertex in V-S
» iff V-Sis a vertex cover of G©

* Therefore the vertex cover problem is NP-complete

12-9

NP-COMPLETENESS

Some proved NP-complete problems

CPS 616

[CEuiseh]
SIH.LHL

7L61
drey
SNIONANDAS g0l e

(BOOE] TEMON-u==rT
BEIEUEOH UTe

TLGT
umarg

diey

TLAT

daey
ALTTTHYHNOTOOE

(Ayenbaur ajfiwern)
NVHSHTYS DNITHAVEL

TLGT

d

= TLAT

daey (epduns)
LNAMNOISSY HVANIT TVILLAO

HAAWNN JLLYWOHHD

LINDHID NVINOLTINVH TALOHEHIAND

FLAT
ZLE1 ceitiooon 5 “nesye[Aaregy

duei PLGI
¥
P e) wLET

i uosufyo] faren

TLGT WSIHAHOWOSI HAVHOHNS

LINDOHID NVINOLTINYH OELOHHIO

IOy i

TL6T 00D
ALTTIAVIASILVS

LINEMOISSY IVANIT TVIILLIO

HHAOD XHLYHHA

ZLAT

ZLGT drmy

dey

ONINWVHEOOHd ¥HOHLNI 1-0

L6l
damy

LHAS DHY AOVHAAHA e

[TIIVIISILVS EHDUE”.
—_—
T00Z
LEIEE TR
0007
TLGT adEy

duey

NVI{SHTYS DNITHAVILL g

LAS AUON ADVETALL LAS HAON LNAGNAdAANT

