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TURING MACHINES 

Explanation (from 

Wikipedia) 

A Turing machine 

consists of:  

 

 
 

1. A tape divided into cells, one next to the other. Each cell contains a symbol 

from some finite alphabet. The alphabet contains a special blank symbol  and 

one or more other symbols. The tape is assumed to be arbitrarily extendable to 

the left and to the right, i.e., the Turing machine is always supplied with as 

much tape as it needs for its computation. Cells that have not been written 

before are assumed to be filled with the blank symbol. In some models the tape 

has a left end marked with a special symbol; the tape extends or is indefinitely 

extensible to the right. 

2. A head that can read and write symbols on the tape and move the tape left and 

right one (and only one) cell at a time. In some models the head moves and the 

tape is stationary. 

3. A state register that stores the state of the Turing machine, one of finitely 

many. Among these is the special start state with which the state register is 

initialized. These states, writes Turing, replace the "state of mind" a person 

performing computations would ordinarily be in. 

4. A finite table of instructions that, given the state(qi) the machine is currently 

in and the symbol(aj) it is reading on the tape (symbol currently under the 

head), tells the machine to do the following in sequence: 

 Either erase or write a symbol (replacing aj with aj1),  

 Move the head ('L' for one step left or 'R' for one step right or 'N' to stay in 

the same place),  

 Assume the same or a new state as prescribed (go to state qi1). 

Note that every part of the machine (i.e. its state, symbol-collections, and used tape 

at any given time) and its actions (such as printing, erasing and tape motion) is 

finite, discrete and distinguishable; it is the unlimited amount of tape and runtime 

that gives it an unbounded amount of storage space   
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Formal Definitions 

• A Deterministic Turing Machine (DTM) is a tuple M=(Q, q0,F,T,I, b, δ) s.t. 

 Q is a finite non-empty set of states 

 q0 is the initial state; q0 ∈ Q 

 F is a set of final (or accepting) states; F ⊆ Q 

 T is a finite non-empty set of tape alphabet symbols 

 b  is the blank symbol: the only symbol which can occur on the tape 

infinitely; b  ∈ T 

 I is the set of input symbols;  I ⊆ T-{b} 

 δ is the next-move (transition) function:  (Q-F)×T → Q×T×{L,R,N}  

δ(qi,ai) = (qj,aj,m) means that  

If the head is over ai while the TM is in state qi, then 

 the head will replace ai by aj 

 the head will move in the direction indicated by m (L= left, R= right, 

N=no move) 

 the TM will now be in state qj 

Note: not all δ(qi,ai) are defined 

• A Non-Deterministic Turing Machine (NTM) is such that. 

 Q, q0, F, T, I, b are defined exactly as for DTMs 

 Instead of δ(qi,ai) yielding 0 or 1 element of Q×T×{L,R,N} 

δ(qi,ai) ⊆ Q×T×{L,R,N} 

• Variations: 

 TMs may have multiple tapes 

 TMs may have a single final state 

 TMs may allow only L and R movements 

• An string of input symbols is accepted by a Turing Machine iff the TM starts 

in q0 with the tape head at the left and makes a sequence of moves which 

makes it enter one of the accepting states.  

• The language L(M) accepted by a Turing Machine M is the set of strings of 

input symbols accepted by that Turing machine. 

Properties 

• All DTMs are NTMs 

• It is possible to turn any NTM into a DTM: i.e. any language accepted by an 

NTM is accepted by some DTM 

• Church-Turing Thesis: anything that can be "computed" can be computed on 

a Turing Machine 
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NTM EXAMPLE 

Partition Problem: 

• Accept strings of the form 10i110i2…10ik such that 

• There is some set I ⊆ {1, 2, …, k} for which 

•    ∑ 𝑖𝑗𝑗∈𝐼  = ∑ 𝑖𝑗𝑗∉𝐼    

NTM 

• NTM has 3 tapes: 

 Tape1 contains input string S 

 Tapes 2 and 3 are output tapes 

• NTM scans tape1: 

 After reading a ‘1’ it picks tape 2 or 3 (call is TAPE) 

 After reading a ‘0’ it stores it in TAPE 

 At the end of tape1, it counts the # of 0s in tapes 2 and 3 and accepts S if 

the same number of 0s is in both tapes. 

• Formally: 

M=({q0,..,q5}, q0,{q5},{0,1,B,$},{0,1}, B, δ) 

 

δ is defined as: 
 

 Current Symbol 
(New Symbol, Head 

move) 
New 

State 
Explanation 

State Tape1 Tape2 Tape3 Tape1 Tape2 Tape3 

q0 1 B B 1,N $,R $R q1 

Mark end 

of tapes 2 

and 3 

q1 
1 B B 1,R B,N B,N q2 Random 

state 1 B B 1,R B,N B,N q3 

q2 

0 B B 0,R 0,R B,N q2 
Write 0s on 

tape 2 
1 B B 1,R B,N B,N q1 

B B B B,N B,L B,L q4 

q3 

0 B B 0,R B,N 0,R q3 
Write 0s on 

tape 3 
1 B B 1,R B,N B,N q1 

B B B B,N B,L B,L q4 

q4 
B 0 0 B,N 0,L 0,L q4 Match 0s in 

tapes2,3 B $ $ B,N $,N $,N q5 

q5        Accept 
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COMPLEXITIES 

Note: These definitions are simplified and not completely accurate. 

Algorithms 

• An algorithm A is said to be of polynomial time if there is a polynomial p(n) 

s.t. Cost(A) ∈ O(p) 

• An algorithm is said to take superpolynomial time if there is no polynomial 

p(n) s.t. Cost(A)∈ O(p) 

Turing Machines 

• A DTM M is said to be of time complexity T(n) if every accepted input 

string of length n is accepted in at most T(n) moves.  

• A NTM M is said to be of time complexity T(n) if for every accepted input 

string of length n there is a sequence of at most T(n) moves leading to an  

accepting state.  

• A DTM M is said to be of space complexity S(n) if at most S(n) different 

cells are scanned on any tape to accept any input string of length n.   

• A NTM M is said to be of space complexity S(n) if for every accepted input 

string of length n there is a sequence of moves leading to an accepting state in 

which at most S(n) different cells are scanned on any tape. 

 Decision Problems 

• A decision problem is a problem in a formal system (system of abstract 

thought based on the model of  mathematics) with a yes-no answer 

Examples: 

 Is this graph connected? 

 Is this number prime? 

 Is this polynomial nonnegative? 

 Is this optimization problem feasible? 
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P AND NP CLASSES 

P Class 

• P = the complexity class of decision problems which can be solved in 

polynomial time (i.e with a polynomial algorithm) 

• Examples: 

 Connectedness: Is the graph G connected? 

 Element uniqueness: Does an array have duplicate elements? 

 Primality: is a number prime?  (AKS primality testing algorithms 

developed in 2002 is O(log6n) 

• P = the complexity class of decision problems that can be solved on a DTM 

of polynomial complexity 

= {L | ∃ a DTM M and a polynomial p(n) s.t. M is of time complexity p(n) 

and L=L(M)} 

NP Class 

• NP = the complexity class of decision problems which can be verified in 

polynomial time (i.e a solution can be verified with a polynomial algorithm) 

• Examples: 

 Is there a subset of {-8, -5, 0, 1, 2, 6,  10} s.t. the sum of the elements will 

be 0? 

 Are these two 

graphs 

isomorphic: 

 

B

A

D

F

E

C

 

1

2

3

6
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5

 

 Does this graph 

have a 

Hamiltonian 

circuit: 

1

2

3

6

4
5

 

 

• NP = the complexity class of decision problems that can be solved on a NTM 

of polynomial complexity 

= {L | ∃ an NTM M and a polynomial p(n) s.t. M is of time complexity p(n) 

and L=L(M)} 

Properties: 

• P ⊆ NP 

• Open Problem: Is P = NP or is P ⊂ NP? 
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POLYNOMIAL TRANSFORMATIONS 

Definition 

• A language L is polynomially transformable to a language L0 if there is a 

polynomial DTM M which will convert every string w in the alphabet of L 

into a string w0 in the alphabet of L0 s.t. w ∈ L if and only if w0 ∈ L0 

Example 

• Languages:  

 L = {0n for n∈ ℕ} = {0,00,000,0000, etc.} 

 L0 = {0𝑛2
 for n∈ ℕ} = {0,0000, 000000000, 0000000000000000, etc.} 

• Deterministic Turing Machine: 

 3 tapes: 

T1=input string w 

T2=scratchpad 

T3=output string w0 

 Algorithm: 

Copy w from T1 to T2 

For each element of T2, copy w 

(from T1) onto T3 

 

  Current Symbol (NewSymbol, move) New 

State 
Explanation 

State T1 T2 T3 T1 T2 T3 

q0 
0 B B 0,R 0,R B,N q0 Copy T1 to 

T2 B B B B,L B,L B,N q1 

q1 

0 0 B 0,L 0,N 0,R q1 
Copy T1 to 

T3 R→L 
B 0 B B,R B,L B,N q2 

0 B B 0,N B,N B,N accept 

q2 

0 0 B 0,R 0,N 0,R q2 
Copy T1 to 

T3 L→R 
B 0 B B,L B,L B,N q1 

0 B B 0,N B,N B,N accept 

 

 This TM is of time complexity O(n2) 

 Therefore L is polynomially transformable to L0 

 

 Note that it is harder to prove that L0 is 

polynomially transformable to L    → 

 

BCE B E B

E C

B C

E C
 

Theorem: 

• If L is polynomially transformable to L0 and L0∈P then L∈P 
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PROBLEM REDUCTION REVISITED 

Definitions 

• Problem X is reducible to problem Y if an algorithm for solving Y efficiently 

(if it existed) could be used as a subroutine to solve problem X efficiently 

• If that is the case, then solving X cannot be harder than solving Y (as long as 

the rest of the algorithm for X is at least as efficient as the Y algorithm).  So a 

lower bound on the cost of X becomes a lower bound on the cost of Y. 

• If problem X is reducible to problem Y, the algorithm that solves X using the 

subroutine that solves Y is called a Turing reduction from X to Y 

• A problem X is polynomially reducible to a problem Y (notation X ≤𝒑Y) if 

there is a Turing reduction from X to Y which 

 runs in polynomial time excluding the time spent in the Y algorithm. 

 has a polynomial number of calls to the Y algorithm.   

Example 

• The algorithm we used to solve the element uniqueness problem Q using a 

solution to the minimum spanning tree problem P was a Turing reduction 

from Q to P.  

• Q runs in θ(n) time excluding the time spent in P 

• Q calls P once 

• Therefore the element uniqueness problem is polynomially reducible to the 

minimum spanning tree problem. 

Theorem 

• If X is polynomially reducible to Y and Y∈P then X∈P 

NP-COMPLETENESS 

• A problem Y∈NP is nondeterministic polynomial-time complete (NP-

complete) if all problems in NP can be polynomially reduced to Y 

Satisfiability Problem 

• Can a boolean formula evaluate to true? (i.e. is satisfiable) 

• Examples:  

 "x and not x" is not satisfiable because it is false for all boolean value of x 

 "x and not y" is satisfiable because it is true when x=true and y=false 

• Cook's Theorem: The satisfiability problem is NP-complete 
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Theorem 

• If X∈NP is NP-complete and X is polynomially reducible to Y∈NP then Y is 

NP-Complete 

Other NP-complete Problems: 

• Let G =(V, E) be an undirected graph 

• The complement graph GC = (V,EC) 

where EC = {possible edges not in G} 

 

• a k-clique of G is a complete subgraph of 

G with k vertices (every pair of vertices 

is connected by an edge) 

 

 

• A vertex cover of G is a subset S⊆V s.t. 

each edge of G is incident upon some 

vertex in S 

 

 
 

• The clique problem: "does an undirected graph have a k-clique?"  is NP-

complete 

• Is the vertex cover problem: "does an undirected graph have a vertex cover of 

size k?" NP-complete? 

• The clique problem is polynomially reducible to the vertex cover problem 

 S is a clique of G iff V-S is a vertex cover of GC: 

 S is a clique in G,  

 iff Every pair of vertices in S must be in G 

 iff no edge in GC connects two vertices in S 

 iff every edge in GC is incident upon some vertex in V-S 

 iff V-S is a vertex cover of GC 

• Therefore the vertex cover problem is NP-complete 
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Some proved NP-complete problems 

 

 
 


